

EXTENDING MBSE FOR DECISION PATTERNS AND TRACEABILITY

John Fitch, ESEP Project Performance International jfitch@ppi-int.com

© Copyright and all Other Rights Reserved Project Performance International 2024

Presented this topic at MBSE-CON-2024 Conference in early May Requested to share with the INCOSE Orlando chapter

Added supplemental content from three prior presentations:

- Leveraging Decision Patterns tutorial at IS2023
- Case Study Extending LML to Enable Decision Patterns and Traceability presentation at IS2023
- <u>Leveraging Decision Patterns to Tame Complexity and Accelerate Solution Delivery</u> September 2022 INCOSE GfSE Webinar

In order to:

- Provide better background on the newer concepts
- Include a second case study example of extending a language (LML)

Page 2 of 35

PPI SyEN monthly Newsjournal articles:

- Introduction to Decision Patterns: <u>Edition #107 (December 2021)</u>
- Decision Patterns So What?: <u>Edition #111 (April 2022)</u>
- Reverse Engineering Stakeholder Decisions from Their Requirements: <u>Edition #113 (June</u> <u>2022</u>)
- Extending the Lifecycle Modeling Language (LML) to Enable Decision Patterns and Traceability: <u>Edition #125 (June 2023)</u>
- Rethinking Requirements Derivation Part 1: Edition #129 (October 2023)
- Rethinking Requirements Derivation Part 2: <u>Edition #130 (November 2023)</u>

Page 3 of 35

- Decisions are the human thinking process that transforms a problem definition (requirements/goals) into a solution description (design)
- But design decisions are poorly captured into today's system modeling languages and tools
- This failure has significant impact on the value delivered to stakeholders
- The fixes are fairly simple and well (but not widely) understood a demonstration example exists that highlights language and tool gaps
- LML and Innoslate show a lot of promise as a decision capture platform
- But there are many details to work out to optimize the results
- Lessons learned from LML can easily be extended to SysML 2.0 and its supporting tools or other MBSE platforms

Page 4 of 35

- Loss of the thinking that provides the rationale behind the design
- Failure to visualize, communicate & integrate the factors needed for highconfidence design decisions
- Inefficiencies in the face of change
- Inability to perform multi-decision optimization/tradeoffs
- Loss of the derivation traceability thread that is the source of all requirements
- Inability to leverage past decisions as patterns to accelerate/improve thinking

- Definition: A decision is a fundamental question or issue that demands an answer or solution not the alternative chosen
- Design = decision making
- A system design is the result of numerous decisions (that must be consistent)
- These decisions follow patterns that can be used to jump-start any project
- An explicit decision model enables proactive, efficient & effective design; ad hoc decision-making just the opposite
- Decisions create requirements, i.e., all requirements are derived requirements
- Decision traceability demands capture of decision rationale and consequences (a rich data structure)

Page 6 of 35

Product / System Design Decision Pattern

Process Capability Design Decision Pattern

Simplified pattern for business, management or technical processes, such as:

- Technology Roadmapping
- Requirements Management
- System Design
- Manufacturing Operations Management

Number	Decision Name	Decision Description	Decision Class
1	Capability Concept	What is the top-level architecture, design or implementation concept for this capability?	Single Answer
1.1	Usage Scenarios	Where (in which situation, scenarios) will we apply this capability?	Multiple Answer
1.1.1	Value Proposition	How will this capability offer unique value in this usage scenario?	Single Answer
1.2	Core Methods	What methods or combination of methods provide the engine for this capability?	Multiple Answer
1.3	Process Architecture	What process architecture, framework or flow will we use to deploy this capability?	Multi-part Answer
1.3.1	Process Design	How will this part of our process operate?	Single Answer

Decision Class governs the "fan-out" of the decision model:

- Single Answer (Technology)
- Multiple Answer (Portfolio)

٠

• Multi-part Answer (Architecture)

Service Design Decision Pattern

Page 9 of 35

Curriculum/Courseware Design Decision Pattern

© Copyright and all Other Rights Reserved Project Performance International 2024

Page 10 of 35

Enterprise Strategy Decision Pattern

© Copyright and all Other Rights Reserved Project Performance International 2024

The Foundation - Ontology for Design Decisions

My Nth rodeo in mapping decision data to a structured language and tool schema. Initial mapping shown above **PROCESS:**

- Populated rich examples to highlight information gaps (entity classes, relationships, attributes)
- Visualized examples in Innoslate to uncover and highlight software capability gaps

NEXT: Engage LML community to work through information modeling tradeoffs -> elegance

Essential skill: Two-dimensional mapping process

Decision-Centric SE Information Metamodel

Decision Pattern	Requirement	Criterion	Decision	Alternative	Performance	Derived Requirement	Risk	Mitigation		
1. Solution Concept										
1.1 Use Cases to Support	×		K							
1.1.1 Use Case Value Proposition										
1.1.2 Use Case Flow	K									
1.1.2.1 Subsystem Role (Ops Concept)										
1.2 Feature Set				Cou	rea de ourro					
1.2.N Feature Concept			Lorem	ipsun dolor s	sit amet, cons	sectetur adip	isong elit, s	ed		
1.3 Operating Regime(s)			de eius	mod tempor	incididunt ut	labore et dol	ore magna			
1.3.1 Research Strategy			ullamos laboris nisi ut aliquip ex ea commodo consequat.							
1.3.2 Behaviors to Exploit			Duis au	Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepte r sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt						
1.3.2.1 Exploitation Method			cupidat							
			mollit a	nim id est lat	oorum.					

One Model with Many Uses

Decision Pattern Engagements

Common Tasks

As implemented in Innoslate V4.9. All new classes have been implemented as subclasses

New subclasses

- Design Decision
- Criterion
- Alternative
- Performance
- Opportunity

Open issues

- Attributes for Performance to enable Weighted Score evaluation?
- Opportunity as subclass of Risk (or as further generalization of discrete uncertain events)?

Example System – Fitch Inertial (Crash) Barrier

 \sim

Use decision patterns to frame the problem, accelerate solution development and increase stakeholder value.

Requirements Validation

 Reverse engineer stakeholder decisions to validate requirements & bound project scope

Project Decision Planning -> Design

 Proactively identify & prioritize "open" decisions; plan analysis to inform them. Execute the design plan

Reverse engineered 25 decisions from the Crash Barrier patent using the Product Design decision pattern.

GAP: Inefficient process for instantiating cross-project decisions (seeding current project decisions & criteria from the pattern)

GAP: Visualizing pattern "where-used" traceability to support continuous pattern refinement.

Crash Barrier - Decision Summary Table

Visualize design decisions and alternatives in a compact table form. Tabular equivalent to a multi-panel Decision Breakdown Structure (hierarchy)

Design Summary

- Conduct reverse engineering "Decision Blitz"
- Communicate decision priorities, status, analysis plans, or current design thinking

Multiple variants

- Brainstorm alternatives to evaluate
- Add Selection Rationale for alternatives

Decision Name	chooses Alternative				
D.1 Crash Barrier Product Concept	A.1 Array of energy absorbing barrier units				
D.1.1 Use Cases to Support	A.1.1.a Passenger cars				
D.1.1.1 Value Proposition: Passenger Cars	A.1.1.1 Low cost barriers with high occupant protection performance via limited and "smooth"				
D.1.2 Feature Set	A.1.2 Variable capacity solution using modular components				
	A.1.3.c Barrier-Ambient Environment Interface				
D.1.3 External Interfaces	A.1.3.b Barrier-Highway Infrastructure Interface				
	A.1.3.a Automobile - Barrier Interface				
D.1.4 Product Lifecycle	A.1.4 Set of modular components, assembled and configured in field. Near-zero maintenance.				
D.1.5 Technology: Install barriers	A.1.5 Onsite assembly and configuration of barrier units				
D.1.6 Technology: Maintain barrier operational readiness	A.1.6 Waterproof barrier units with tamper-resistant lids				
D.1.7 Technology: Decelerate errant vehicle	A.1.7 Progressive fracturing of barrier units to transfer momentum and create friction				
D.1.7.1 Technology: Control deceleration rate	A.1.7.1 Barrier units with differing masses spaced to "smooth" the deceleration forces				
D.1.7.2 Technology: Fracture barrier sequence upon impact	A.1.7.2 Frangible cylindrical barrier units with break points				
D.1.7.3 Technology: Disperse sacrificial materials	A.1.7.3 Dispersive material absorbs vehicle momentum				
D.1.7.4 Technology: Impart frictional deceleration forces to vehicle	A.1.7.4 Build-up of dispersive material creates bulldozer effect				
D.1.7.5 Technology: Impart downward forces on vehicle	A.1.7.5 Elevated dispersive materials above vehicle center of mass imparts downward force				
D.1.7.6 Technology: Prevent secondary hazards of fracturing	A.1.7.6 Barrier units constructed to minimize size of broken "shards".				
D.1.7.7 Technology: Reduce post-crash engine compartment fire hazards	A.1.7.7 Engine compartments fill with fire-retardant dispersive materials (sand)				
D.1.8 Barrier System Physical Architecture	A.1.8 Configurable array; units of similar shape, varying in size and fill				
D.1.8.1 Barrier Side Wall Supplier / Model #	A.1.8.1 TBD: Sheet of plastic with breaklines and rivet holes				
D.1.8.2 Barrier Unit Base Supplier / Model #	A.1.8.2 TBD: Circular plastic base				
D.1.8.3 Barrier Lid Supplier / Model #	A.1.8.3 TBD: Circular plastic lid with tamper-resistant closure				
D.1.8.4 Side Wall Fastener Supplier / Model #	A.1.8.4 Standard rivets, size TBD				
D.1.8.5 Interior Platform Supplier / Model #	A.1.8.5 TBD: Elevated variable-height platform - interior pedestals + circular divider				
D.1.8.6 Dispersive Materials Supplier / Model #	A.1.8.6 Dry sand or equivalent				
D.1.8.7 Barrier System Layout	A.1.8.7 Series of barrier units of increasing size/mass arranged linearly. See Figure N				
D.1.8.8 Barrier Unit Physical Design / Form Factor	A.1.8.8 Cylindrical containers in a discrete range of sizes				

Page 20 of 35

DECISION BLITZ RESULTS

Decision ID & Name

Decision Question

Alternatives Considered

DD.1 - Services Portfolio	What set of services will we deliver to these customers?	Project Decision Jump-Start (PDJS)	ALT.1.a
DD.1.1 - Service Concept	What is the top-level concept for this service? What will be offered	Capture stakeholder decision context + project decision	ALT.1.1.a
	in what situations? What makes it unique?	baseline	
DD.1.1.1 - Application Scenarios	In what scenarios or situations will this service be delivered?	Requirements Validation (RV)	ALT.1.1.1.a
		Project Decision Planning (PDP)	ALT.1.1.1.b
DD.1.1.1.1 - Value Proposition:	How will the service deliver value in the Requirements Validation	Significant improvement to requirements quality +	ALT.1.1.1
Requirements Validation	scenario or situation?	stakeholder concurrence	
DD.1.1.1.2 - Value Proposition: Project	How will the service deliver value in the Project Decision Planning	Aligned problem definition with project design scope	ALT.1.1.1.2
Decision Planning	scenario or situation?		
DD.1.1.2 - Service Options	What are the primary service options (bundles of work products)	Decision coaching - Decision-centric Digital Thread	ALT.1.1.2.f
	that will be offered?	Requirements Validation (RV) standalone	ALT.1.1.2.a
		Project Decision Planning (PDP) standalone	ALT.1.1.2.b
		RV + PDP bundle	ALT.1.1.2.c
		RV + RQM bundle	ALT.1.1.2.d
		MBSE tool extension for decision management	ALT.1.1.2.e
DD.1.1.3 - Methods Engine	What methods or combination of methods provide the engine for	Pattern-based decision reverse engineering	ALT.1.1.3.a
	this service?	Reqt - Decision - Reqt traceability	ALT.1.1.3.b
DD.1.1.3.1 - Behaviors to Exploit	What human behaviors or scientific principles will be exploited to	Pattern-driven continuous improvement	ALT.1.1.3.1.a
	create value within this service?	Continuous derivation traceability	ALT.1.1.3.1.b
DD.1.1.3.1.1 - Exploitation Method:	How will the service exploit this behavior/principle to deliver	Jumpstart creation of customer-owned knowledge assets	ALT.1.1.3.1.1.a
Pattern-driven continuous	value?		
improvement			
DD.1.1.3.1.2 - Exploitation Method:	How will the service exploit this behavior/principle to deliver	Continuous requirement, decision and plan alignment	ALT.1.1.3.1.2.a
Continuous derivation traceability	value?		
DD.1.1.3.2 - Behaviors to Control	What human behaviors or scientific principles will be controlled	Human doubts about patterns - the belief that every project	ALT.1.1.3.2.b
	(regulated, suppressed or avoided) to realize value?	is unique.	
DD.1.1.3.2.1 - Control Method: Human	How will the service control or suppress this unwanted	Offline reverse engineering creates believable, traceable	ALT.1.1.3.2.1.c
doubts about patterns	behavior/principle?	decision model	
DD.1.1.4 - Service Flow	What series of steps will deliver this service? How will the	See Process N2:	ALT.1.1.4.a
	engagement flow?		

Reverse engineered 25 decisions from the Crash Barrier patent using the Product Design decision pattern.

GAP: Lack "one-page" graphical design summary. No multi-panel decision "boxes" with Decision Name + Alternative(s) chosen and/or analyzed.

Choose Home Point-of-Use Water Filter Concept

Capture the data required to fully inform the decision analysis process (Screening & scoring).

GAP: Inability to visualize evaluation matrix data in compact form

GAP: Inefficient data entry using standard Entity editors

GAP: No built-in weighted score or normalized weighted score calculations

Crash Barrier - Evaluation Matrix Data

Criteria	Crit Weight	Design Decision	chooses Alternative	exhibits Performance	Score	Weighted Sc \$	evaluated by Criterion
CR.1.a Death/Injury reduction per crash	2	D.1 Crash Barrier Product Concept - Criteria-Performance Product Concept Eval Matrix data: Criteria and associated alternative performance	Array of energy absorbing barrier units	Pf.CR.1.i.Alt.1 \$X in new highway equipment cost	6	12	CR.1.i Compatibility with existing highway maintenar
CR.1.b Range of vehicles (crash scenarios) mitigated	2			Pf.CR.1.h.Alt.1 Very limited collateral damage	9	18	CR.1.h Collateral damage to other vehicles, infrastruc
CR.1.c Lifecycle cost per installation	2			Pf.CR.1.g.Alt.1 \$X K restoration cost	3	6	CR.1.g Barrier post-crash restoration cost
CR.1.d Barrier useful life	2			Pf.CR.1.f.Alt.1 X% loss of vehicle value	8	16	CR.1.f Damage to errant vehicle
CR.1.e Reconfigurability / reuse	2			Pf.CR.1.e.Alt.1 X% component reconfigurability/reuse	4	8	CR.1.e Reconfigurability / reuse
CR.1.f Damage to errant vehicle	3			Pf.CR.1.d.Alt.1 20-25 year life	6	18	CR.1.d Barrier useful life
CR.1.g Barrier post-crash restoration cost	4			Pf.CR.1.c.Alt.1 \$X K LC cost	9	36	CR.1.c Lifecycle cost per installation
CR.1.h Collateral damage to other vehicles, infrastructure	9 5			Pf.CR.1.b.Alt.1 X% of vehicle crash scenarios	8	40	CR.1.b Range of vehicles (crash scenarios) mitigate
CR.1.i Compatibility with existing highway maintenance	5			Pf.CR.1.a.Alt.1 X% death/injury reduction	8	40	CR.1.a Death/Injury reduction per crash

Capture the data required to fully inform the decision analysis process (Screening & scoring).

GAP: Inability to visualize evaluation matrix data in compact form

GAP: Inefficient data entry using standard Entity editors

GAP: No built-in weighted score or normalized weighted score calculations

Crash Barrier - Evaluation Matrix View

The Performance cells in a typical Evaluation Matrix are first-class entities with multiple attributes, not just relationships Legend

chooses

evaluates

Desire direct input to matrix

Current process:

- Create Performance entities
- Associate with Alternative
- Associate with Criterion
- Edit attributes

Visualize decision data

Move between equivalent views:

- Matrix
- Radar
- Tornado?

A bit of a maze

Radar Diagram can visualize weighted scoring judgments (performance against criteria) for a single alternative vs objective/goal value

Usability GAPS:

- Inefficient entry of Performance data
- Manual diagram setup process; no defaults

Capability GAPS:

- No multiple-alternative comparisons; multiple side-by-side charts hard to compare
- Can't sort criteria by weight or weighted score attributes

Product Concept decision: Fitch Inertial Barrier alternative

DECISION ANALYSIS VISUALIZATIONS

Radar Diagram Perf.a.Alt.1.1.5.b Innoslate performance Perf.b.Alt.1.1.5.b Perf.i.Alt.1.1.5.b Innoslate strategic Innoslate functionality fit 20 Perf.c.Alt.1.1.5.b Perf.h.Alt.1.1.5.b Innoslate availability Innoslate UX Perf.g.Alt.1.1.5.b Perf.d.Alt.1.1.5.b Innoslate platform Innoslate cost life Perf.e.Alt.1.1.5.b Perf.f.Alt.1.1.5.b Innoslate ease of Innoslate extensibility integration

Service Delivery Platform decision: Innoslate alternative

Risk Matrix

Page 27 of 35

Crash Barrier - Decision-to-X Traceability

Need: "Decision-in-the-Middle" view to communicate how multiple requirements/goals drive a decision, which then creates multiple derived requirements based on the chosen alternative.

GAP: Display of N-1-N traceability topology is painful (Manual Spider Diagram setup)

Requirement – Decision – Requirement Trace (N-1-N Trace)

© Copyright and all Other Rights Reserved Project Performance International 2024

Visualize how design decisions, through the alternatives chosen, create all "downstream" model entities

Decisions create Requirements

Inherent consequences of chosen alternative's:

- Structure
- Behavior
- Footprint
- Interfaces
- Lifecycle

Page 30 of 35

Visualize how design decisions, through the alternatives chosen, create all "downstream" model entities

Decisions Create Architecture

Architecture decisions define system structure:

- Assets (system elements)
- Conduits (interfaces)

GAP: Alternatives from multiple decisions may *shape* each system element and interface. Difficult to quickly visualize these many-to-many relationships. Reuse N-1-N view?

Crash Barrier - Logical / Functional Architecture

Model functional requirements to fully represent the as-designed behavior of the system, consistent with its physical architecture/design

GAP: Efficient methods to iterate and align physical and functional architectures, traced from design decision alternatives. (N-N-N relationships)

GAP: Maintenance of multiple overlapping designs during development

LML / Innoslate able to rigorously capture and visualize engagement flow (use case design)

Page 33 of 35

Let's get started!

- Examples demonstrate that LML and Innoslate provide a great foundation for capturing design decisions and decision traceability
- But my prototypes are not likely the optimum extensions to LML (or SysML 2.0)
- Seeking your time to work through language tradeoffs & software features to support:
 - Rapid project decision framing through use of a decision pattern
 - Decision analysis capture and communication
 - Decision-to-everything traceability
- Who is available to dive in? How can we get this accomplished?

Page 34 of 35

Decision patterns are proven and available

Most of your MBSE tools can be extended with a modest one-time effort while we wait for the standards and vendors to catch up

Project Decision Jump-start Services provide immediate payback

You can take ownership of a set of decision patterns that will:

- improve the value delivered to your stakeholders
- accelerate solutions into reality

Thank you for attending this presentation!

Learn more about how to leverage decision patterns and traceability in your projects with Project Performance International (PPI) Project Decision Jump-Start Services.

Scan the QR code below or visit <u>www.ppi-int.com/corporate-services/ppi-project-decision-jump-start-landing/</u> to discover how John Fitch can help you visualize stakeholders' decisions, validate project requirements, and plan for effective design decision-making.

Scan the QR code to Learn More